Descriptive Statistics:

\[\bar{x} = \frac{\sum x}{n} \]

\[R = \text{maximum} - \text{minimum} \]

\[s = \sqrt{s^2} = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n - 1}} \]

\[z = \frac{x - \mu}{\sigma} \quad \text{or} \quad z = \frac{x - \bar{x}}{s} \]

\[\text{IQR} = Q_3 - Q_1 \]

Lower fence = \(Q_1 - 1.5(\text{IQR}) \)
Upper fence = \(Q_3 + 1.5(\text{IQR}) \)

Correlation & Regression:

The equation of the least-squares regression line is \(\hat{y} = b_0 + b_1 x \), where \(\hat{y} \) is the predicted value, \(b_0 \) is the \(y \)-intercept, and \(b_1 \) is the slope.

Residual = Observed \(y \) – Predicted \(y = y - \hat{y} \)

Probability:

\[n \text{C}_r = \frac{n!}{r! (n - r)!} \]