[Topic 1] Applications of Integration

【6.1】Area between Curves

1. Consider the region below the graph of \(y = \arcsin \left(\frac{x}{2} \right) \) in the first quadrant bounded by \(x = 0 \) and \(x = 2 \).
 a. Set up, but **DO NOT EVALUATE**, the integral with respect to \(x \) that gives the area of the region.
 b. Set up, but **DO NOT EVALUATE**, the integral with respect to \(y \) that gives the area of the region.

2. Consider the region between the graphs of \(y = \cos x \) and \(y = \sin \left(2x \right) \) from \(x = 0 \) to \(x = \frac{\pi}{2} \).
 Set up, but **DO NOT EVALUATE**, the integral(s) with respect to \(x \) that gives the area of the enclosed region.

3. Set up, but **DO NOT EVALUATE**, the integral(s) with respect to \(x \) that gives the area of the region in the first quadrant bounded by the axes, \(y = e^x \), \(x = e^y \) and the line \(x = 4 \).

【6.2】Volume by Slicing

1. The base of a certain solid is given by \(x^2 + y^2 = a^2 \), \(a > 0 \). Each cross section of the solid is a square with one side on the base of the solid. The cross sections are perpendicular to the \(x \)-axis. Find the volume of this solid.

2. A chamber is created by rotating the function \(y = a \sin x \), \(0 \leq x \leq \pi \) about the \(x \)-axis. Find all values of \(a \) required for the chamber to hold exactly \(2\pi^2 \) cubic units of sand.

3. Let \(R \) be the region bounded by \(y = e^{2x} \), \(y = 2 \) and \(x = 0 \) in the first quadrant.
 a. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the \(x \)-axis using the **disk/washer method**.
 b. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the \(y \)-axis using the **disk/washer method**.
c. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(x = \frac{1}{2} \ln 2 \) using the **disk/washer method**.

d. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(y = 2 \) using the **disk/washer method**.

4. Consider the region bounded by \(f(x) = 3x \) and \(g(x) = x^2 \).
 a. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(y = 10 \) using the **disk/washer method**.
 b. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(x = -1 \) using the **disk/washer method**.

【6.3】Volume by Shells

1. Follow #3 in 【6.2】
 a. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the \(x \)-axis using the **shell method**.
 b. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the \(y \)-axis using the **shell method**.

2. Let \(R \) be the region bounded by \(y = x^2 \), \(x = 2 \) and \(y = 0 \) in the first quadrant.
 a. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(x = -5 \) using the **shell method**.
 b. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(x = 5 \) using the **shell method**.
 c. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(y = -5 \) using the **shell method**.
 d. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(y = 5 \) using the **shell method**.
3. Follow #4 in 【6.2】
 a. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(y = 10 \) using the shell method.
 b. Set up, but do not evaluate or simplify the integral that gives the volume of the solid obtained by rotating the region \(R \) around the line \(x = -1 \) using the shell method.

【8.1】Arc Length
1. We can approximate the length of a curve with the sum of the lengths of line segments, expressed as \(L \approx \sum_{k=1}^{n} \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2} \). What theorem helps us rewrite this sum as \(L \approx \sum_{k=1}^{n} \sqrt{1 + \left[f'(x_k)\right]^2} \Delta x \)?
2. Find the equation of a curve that passes through the point \((1,5)\) and has an arc length on the interval \([2,6]\) given by \(\int_2^6 \sqrt{1 + 16x^{-6}} \, dx \).
3. Find the length of the curve \(y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}} \) for \(0 \leq x \leq 1 \).
4. Find the length of the curve \(x = \frac{2}{3}y^\frac{3}{2} - \frac{1}{2}y^\frac{1}{2} \) for \(1 \leq y \leq 9 \).

【8.2】Surface Area
1. Use Calculus to find the surface area of a sphere with radius \(r \).
2. Consider the arc of the curve \(y = \sqrt{1 + e^x} \) where \(0 \leq x \leq 1 \). Find the area of the surface obtained by rotating this arc about the \(x \)-axis.
3. Consider the arc of the curve \(x = \frac{1}{3}(y^2 + 2)^{\frac{3}{2}} \) where \(1 \leq y \leq 2 \). Find the area of the surface obtained by rotating this arc about the \(x \)-axis.
4. Consider the arc of the curve \(x = \sqrt{16 - y^2} \) where \(0 \leq y \leq 2 \). Find the area of the surface obtained by rotating this arc about the \(y \)-axis.
5. Consider the arc of the curve \(y = \frac{1}{4}x^2 - \frac{1}{2}\ln x \) where \(1 \leq x \leq 2 \). Find the area of the surface obtained by rotating this arc about the \(y \)-axis.
MTHS 1080 Final Exam Review Answer

[Topic 1] Applications of Integration

【6.1】Area between Curves

(1) (a) \(\int_0^2 \arcsin \left(\frac{x}{2} \right) \, dx \) (b) \(\int_0^{\frac{\pi}{2}} \left(2 - 2 \sin y \right) \, dy \) (2) \(\int_0^\pi \left(\cos x - \sin 2x \right) \, dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\sin 2x - \cos x \right) \, dx \)

(3) \(\int_0^1 e^x \, dx + \int_1^4 \left(e^x - \ln x \right) \, dx \)

【6.2】Volume by Slicing

(1) \(\frac{16}{3} a^3 \) cubic units (2) \(\pm 2 \) (3) (a) \(\int_0^{\ln 2} \frac{\pi}{2} \left[2^2 - \left(e^{2x} \right)^2 \right] \, dx \) (b) \(\int_0^\pi \frac{\pi}{2} \left(\frac{1}{2} \ln y \right)^2 \, dy \)

(c) \(\int_0^\pi \left[\frac{\left(\frac{1}{2} \ln 2 \right)^2}{2} \left(\frac{1}{2} \ln 2 - \frac{1}{2} \ln y \right)^2 \right] \, dy \) (d) \(\int_0^{\ln 2} \frac{\pi}{2} \left(2 - e^{2x} \right)^2 \, dx \)

(4) (a) \(\int_0^3 \pi \left[(10 - x^2)^2 - (10 - 3x)^2 \right] \, dx \) (b) \(\int_0^\pi \left[\sqrt{y + 1}^2 - \left(\frac{y}{3} + 1 \right)^2 \right] \, dy \)

【6.3】Volume by Shells

(1) \(\int_0^\ln 2 2 \pi y \left(\frac{1}{2} \ln y \right) \, dy \) (b) \(\int_0^{\ln 2} 2 \pi x \left(2 - e^{2x} \right) \, dx \) (2) (a) \(\int_0^\pi 2 \pi \left(x + 5 \right) x^2 \, dx \)

(b) \(\int_0^\pi 2 \pi \left(5 - x \right) x^2 \, dx \) (c) \(\int_0^\pi 2 \pi \left(y + 5 \right) \left(2 - \sqrt{y} \right) \, dy \) (d) \(\int_0^\pi 2 \pi \left(5 - y \right) \left(2 - \sqrt{y} \right) \, dy \)

(3) (a) \(\int_0^\pi 2 \pi \left(10 - y \right) \left(\sqrt{y} - \frac{4}{3} \right) \, dy \) (b) \(\int_0^\pi 2 \pi \left(x + 1 \right) \left(3x - x^3 \right) \, dx \)

【8.1】Arc Length

(1) The Mean Value Theorem (2) \(f \left(x \right) = -2x^2 + 7 \) and \(f \left(x \right) = 2x^2 + 3 \) (3) \(\frac{4}{3} \) (4) \(\frac{55}{3} \)

【8.2】Surface Area

(1) \(4 \pi r^2 \) square units (2) \(\pi \left(e + 1 \right) \) (3) \(\frac{21}{2} \pi \) (4) \(16 \pi \) (5) \(\frac{10}{3} \pi \)